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Using a new, energy conserving finite-difference scheme for the unaveraged Navier- 
Stokes equations, pressure driven flow in a square duct is calculated for meshes of 7,9, 11 
and 17 points in each of three space directions. Both fully developed laminar and tur- 
bulent solutions are obtained as a function of the pressure drop imposed. The solutions 
are independent of initial conditions. Friction factor-Reynolds number relations, mean 
velocity protiles, Reynolds stress profiles and mean turbulence energy profiles quali- 
tatively resemble data from physical flows. Improvement is noted as the mesh is retied. 
However, quantitative results would require an excessively tine mesh with impractically 
large computing requirements. 

1. INTg0000T10~ 

Three-dimensional incompressible turbulent flow in a square duct is calculated 
numerically. A mean axial pressure gradient drives the flow. The flow is computed 
in time from an initial state to a statistically stationary state. The computations 
are made with a new energy conserving finite difference approximation to the 
unaveraged Navier-Stokes equations. No closure theories are used. 

The computations were performed, first, to test a new energy conserving scheme 
discovered by the authors, and second, to determine the computing effort required 
for this direct approach. Based on previous work, particularly for homogeneous 
turbulence calculations [l] and shear flow turbulence calculations using turbulence 
theories [2], the computing effort is known to be large for high Reynolds numbers. 
However, no systematic experimental determination of computing effort has been 
made for three-dimensional shear flow turbulence calculated by finite-differencing 
of the unaveraged Navier-Stokes equations. (See [3] for an a priori estimate.) 

* F. M. Galloway is currently with Cleveland State University. 
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2. PHYSICAL AND MATHEMATICAL DESCRIPTION 

The square duct and dimensionless coordinate system are described in Fig. 1. 

FIG. 1. The dimensionless coordinate system. 

It is assumed that the fluid motion within the region R, for an incompressible 
Newtonian fluid, is governed by the dimensionless Navier-Stokes equation 

and by the continuity equation 

auilaxi = 0, (2) 

where i, j = 1, 2, 3 unless otherwise noted, Re is the Reynolds number 
(Re = Du,p/p), ai is the Kronecker delta, “3” is the axial direction, @/ax, 
represents the mean axial pressure gradient, the bar represents ensemble average, 
and P is the deviation of the pressure from the assigned mean pressure gradient. 
Equations (1) and (2) may be put in a form more convenient for finite-difference 
solution by taking the divergence of (1) and simplifying the result with (2). Thus, 
instead of (2), the fourth independent relation becomes 

aaP/axiaxi = -(a/ax,)[u,(au,/ax,)l. 

Note also that (1) may be written in the slightly different form; 

(3) 
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again by making use of (2) to put the convective terms in the altered form. In this 
case, (3) takes the form 

a2qax,ax, = -(a/ax,)[a(u,u,)/ax,]. (5) 

It will be found convenient to refer to both forms (1) and (4) when describing 
the finite-difference approximations in Section 3. 

The boundaries of the test section indicated in Fig. 1 are treated as follows: 
Let BW denote the part of B that is composed of the duct walls, B, the entrance 
plane (z = 0) and Bb the exit plane (z = 1). Then the boundary conditions for 
the periodic test section are 

On Bw 

Vi = 0, i = 1,2,3, (6) 

ap aw, i -= 
axi Re axj ax, ’ 

i= 1,2 and j=l,2,3, 

where i in (7) denotes the perpendicular direction to the section of B, in question. 

On B, and Bb 

Ui(X, Y, 0) = Ui(X, Y, 11, i = 1, 2, 3, (8) 

w, Y, 0) = w, Y, 1). (9) 

Equation (6) is the no slip condition for the velocity. Equation (7) is the com- 
patible condition for the pressure, obtained by setting U, = 0 in (1) or (4). Equation 
(8) represents a periodic condition imposed on the velocity in the axial direction. 
Thus the duct is considered to be made up of an infinite number of sequential 
adjacent sections, each identical to the region R in Fig. 1. This periodic condition 
on the velocity implies a periodic solution for the pressure deviation P also, since 
the differential Eq. (3) and the boundary conditions at the wall for the pressure 
deviation are identical in each of the sections if the velocity is periodic. Thus, 
condition (9) is obtained. A suitable criterion for choosing the length appears to 
be that the section is long enough such that entrance and exit conditions are 
essentially uncoupled, so that no significant changes in the answers would be 
obtained by using a longer test section. Turbulence correlation measurements 
in a channel [3] indicate that the largest “eddies” are about one-half the channel 
width, so that a length equal to the duct width, i.e., a cubic test section, should 
be sufficient. This assumption was checked by repeating one computation with a 
test section having a length twice the width. The resulting properties of the sustained 
state (see Table I) were essentially the same for both examples. Thus, a cubic 
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section was considered to be sufficient, and the results described in Section 4 were 
computed from such a section. 

To complete the problem statement, an initial velocity field must be assigned. 
There is considerable freedom in this assignment, the only theoretical restriction 
being that the velocity must satisfy the continuity Eq. (2) and boundary conditions. 
In fact, for the numerical solution of the problem, several different initial conditions 
were tried and the sustained state was found to be independent of the particular 
initial conditions used. 

Equations (1) and (3) (or several other combinations of Eqs. (l)-(5)), along 
with the boundary conditions (6)-(g) and appropriate initial conditions form an 
initial-boundary value problem for the dependent variables of pressure and 
velocity. 

3. THE FINITE-DIFFERENCE APPROXIMATIONS 

The periodic test section and grid indices are shown in Fig. 2. The mesh spacing 
is constant and equal in each space direction and is denoted by h. The time 
increment (which is not necessarily constant during each computation) is denoted 
by At. Variables obtained at space-time mesh points from the finite-difference 
computation are denoted as, e.g., U& as an approximation to the variable 
U(x, , yj, zk , 1,) = U{(i - I)h, (j - I)h, (k - l)h, ndt} from the continuous 
problem. In order to treat some of the boundary conditions, it is convenient to 
define some variables at points one mesh interval outside the boundary. These 
points are denoted by, e.g., i = 0 which corresponds to x,, = -h, i = N + 1 

x, x2--- XN 

FIG. 2. Coordinate system and grid indices. 
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corresponding to x~+~ = (N + l)h, j = 0, corresponding to y. = --h, etc. 
The Cartesian tensor notation of Section 2 is replaced by standard Cartesian 
coordinate notation, i.e., x, y, z and U, V, W notation. 

The finite-difference approximation used for the Navier-Stokes Eq. (1) is 

A 
I I I 
u;.p - u;;1 

2At 
+ ; [ v-ctl,*)“~ m-lik)2 + G+lkG+lk ; GlkG-lk 

B 

+ uak+lw;k+l 2h - Gk-1 c*,-1 Uin+ljk - u:-I, 
+ uijk ( 2,5 ) 

+ vijk ( %+lk ; %lk ) + WE, ( u:k+, & U;k--l )] 

C 

Pi",ljk - PF-ljk ' 
z- 

2h 

and similar equations for V and W. The approximation for the continuity Eq. (2) is 

u&k - u&j, + v:+,k - v;-,k 
+ 

w:k+l - w;k-1 

2h 2h 
2h = 0. (11) 

The finite-difference version of the continuous elliptic equation for the pressure 
(3) is derived in a manner analagous with the derivation of the continuous equation. 
UGi’ is explicitly solved for from Eq. (10) and V$’ and W$’ are solved for from 
the similar equations for V and W. These expressions are substituted into Eq. (11) 
written at time n + 1 so that the velocity at time n + 1 is eliminated. The resulting 
equation is an elliptic difference equation for the pressure at time n in terms of 
(known) velocities at time n and yt - 1. The pressure field determined by this 
equation, when put into Eq. (10) and the similar equations for V and W, insures 
that the velocity field computed at time n + 1 will satisfy the finite-difference 
version of the continuity equation (11). A detailed presentation of this development 
is available [4]. 
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The boundary conditions of Section 2 are approximated as follows: Conditions 
(6) become 

u;, = ui”,, = U&, = U&, = v;, = . . . = W& = 0. 

Conditions (7) become 

P& - P,& = (4/Reh) U.& , 

P& - P& = (4/Reh) V& , 

pg+ljk - PE+, = (4/Reh) G& , 

Phlk - PF,-lk = (4/Reh) V2N-lk . 

The periodic conditions (8) and (9) become 

U& = u&i V& = v;, WE., = WC, 1 <i,j<N 

and 

P& = P;* ) 1 <i,j<N. 

(12) 

(134 

WI 

(13c) 

(134 

(14) 

(15) 

In Eq. (lo), terms A and C are standard central differences to au/at and -aP/ax, 
respectively. D is the Dufort-Frankel approximation for the diffusion terms. 
B is a new finite-difference approximation for the convective terms. It may be 
thought of as a central difference approximation for the average of the two ways 
of writing the convective terms given in Eqs. (1) and (4). This particular form of 
differencing for the convective term is important since it preserves the finite- 
difference analog of the energy conserving property of the convective terms in the 
continuous integral energy equations, i.e., the finite difference analog of 

111 

sss 
Ui( U@U,/ax,)) dx dy dz = 0. 

0 0 0 

Arakawa [5] has presented several schemes which conserve energy in a two- 
dimensional stream function and vorticity formulation. The differencing scheme 
for the convective terms presented here is believed to be a new energy conserving 
scheme for three dimensional calculations. It should be mentioned that for finite 
time steps, the convective part of the differenced equations is no longer exactly 
energy conserving so that nonlinear computational instability may still develop 
at very high Reynolds numbers. 

Conditions (13a-d) allow the pressure to fluctuate at the wall in accordance 
with the governing dilTerenced version of the Navier-Stokes equations. Another 
condition on the pressure was also used, namely, pressure was not allowed to 
fluctuate on the walls. A comparison of results of tests in which first one and 
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then the other type of pressure boundary condition was used showed a similar 
kind of convergence with mesh refinement. However, for the mesh sizes used, 
the convergence of quantitites of interest as the mesh is refined is more clearly seen 
in the examples using the condition that allows no pressure fluctuation. The 
overall scheme may be shown to be an 0{(~It/h)~ + h} approximation to the 
differential system [4]. 

TABLE I 

Tabulation of Computed Runs” 

Run N,Z At PF I.C. T D P.C. l-u 

1 7, 7 standard 

2 7, 7 

3 7. 7 

4 7, 13 

5 7, 7 
6 7, 7 
7 9, 9 

8 9, 9 

9 9, 9 

10 9, 9 

11 9, 9 

12 9, 9 
13 9, 9 

14 11,ll 

15 11,ll 

16 11,ll 

17 11,ll 

18 11,ll 

19 17,17 

20 17,17 

21 17,17 & standard 

22 17,17 

23 17,17 

24 7,7 

0.5 run2 185 39 

2.0 prev. run 266 110 

3.5 run 5 214 113 

3.5 I.C. 1 78 43 

5.0 prev. run 148 91 

7.0 run 5 165 108 

0.7 run 8 111 33 

1.2 run 9 152 61 

3.0 run 10 105 63 

5.0 run 11 77 58 

7.0 I.C. 2 48 38 

12.0 run 11 49 52 

12.0 run 12 44 19 

0.79 run 16 34 28 

7.0 I.C. 3 37 33 

12.0 I.C. 3 47 43 

12.0 run 15 22 26 

12.0 run 17 24 14 

0.8 I.C. 4 32 12 

2.25 I.C. 5 33 17 

2.25 I.C. 5 35 18 

5.0 I.C. 5 17 14 

12.0 I.C. 6 23 30 

0.7 I.C. 7 33 10 

B 1.6 (1) 

4.7 (1) 

5.3 (1) 

3.5 (1) 

4.4 (1) 

6.1 (1) 

3.3 (1) 

5.5 (1) 

6.2 (1) 

6.3 (1) 

4.5 (1) 

7.0 (1) 

A 4.8 (1) 

B 5.5 (1) 

7.5 (1) 

13.2 (1) 

7.2 (1) 

A 6.3 (1) 

B 3.0 (2) 

4.1 (2) 

9.3 (3) 

3.3 (2) 

8.2 (2) 

0.5 (1) 

Table continued 
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TABLE I (continued) 

a Explanation of column headings: 

N, Z: Mesh points in (x, y) and z directions, respectively. 

At: “Standard” corresponds to the linear stability criterion, At I W jmax N 0.4h. 

PF: Relative pressure gradient; PF = 1 corresponds to a center line velocity of W = 1.0 if 
the flow is laminar. 

I.C.: Initial Conditions; the designation “run” followed by a number means the example 
was started from the result of the designated run number. Other initial conditions were used for 
the other runs [4]. 

7: Dimensionless time, T = C:=, Ati, where n is the total number of time steps taken. 

D: Diameters traveled at mean axial velocity of the fluid, D = CL, Atins, where n is defined 
under T above. 

P.C.: Pressure condition used: A corresponds to equation (13); B corresponds to no pressure 
fluctuation on walls. 

hr: computer time used for each example; the numbers in parantheses designate the machine 
used. (1) UNIVAC 1107; (2) I.B.M. 360/75; (3) C.D.C. 6600. For this problem, the ratio of 
machine speeds is on the order of 1: 4.26: 4.02 for (l):(2):(3). 

Note: Runs 3 and 4 have the same conditions except that run 4 has a test section approximately 
twice as long. The results of both runs plot as the same point on Fig. 6, confirming the assumption 
that a cubic test section is long enough. 

2 x 103 

103 

T : 0 (OIMENS!ONLESS TIME) 
I 

FIG. 3. Approach to sustained state. 
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4. NUMERICAL EXPERIMENTS 

The numerical experiments are defined in Table I. A typical experiment is 
conducted by first assigning a Reynolds number, mean pressure gradient and an 
initial velocity field. The velocities are then stepped forward in time using Eq. (10) 
and the analogous equations for V and W. The elliptic equation for the pressure 
in terms of velocity is also solved at each time level. The numerical integration is 
continued forward in time until a sustained state is reached. It has been found 
that this sustained state can be characterized by plotting the energy of the secondary 
flow, E, = Ciik (U$ + V$), versus the mean axial velocity, lP, with dimension- 
less time, T = xyS, dti , as a parameter. An example of this characterization is 
given in Fig. 3. It can be seen that after a long migration, the path eventually 
settles down into a small area. It is assumed that once E, and W have reached 
these relatively stationary values that the velocity field is statistically steady so 
that meaningful averages of other quantities may be computed. The termination 
of each run is based on the use of plots like Fig. 3. 

5. QUALITATIVE RESULTS 

Two distinct types of solutions have been obtained from the finite-difference 
scheme. One type is characterized by a decay of the disturbance present in the 
initial condition to an insignificantly low level. The velocity approaches the 
analytical solution for laminar flow in square ducts [6]. 

As the axial pressure gradient is increased, another type of solution is obtained 
from the finite-difference scheme. For this type, the initial disturbance approaches 
a final steady value. The level of this steady value is significant in that it substantially 
changes the mean properties of the flow. The characteristics of this type of solution 
will be discussed in detail. 

One of these characteristics of the computed flow is the independence of the 
sustained state from the initial conditions. Figure 4 shows the results of two runs 
employing the same set of parameters, but with different initial conditions. These 
are runs 16 and 17 of Table I. It can be seen that both examples settle down in the 
same area of the disturbance-mean velocity plane after starting from widely 
separated points. The estimated sustained state mean velocity (and hence the 
Reynolds number and friction factor) for both flows is virtually identical. This 
independence of the mean properties of the fully developed flow from the initial 
disturbance is, of course, a characteristic of real turbulent flows. From a practical 
standpoint, it can be seen that the choice of initial conditions may have a sub- 
stantial influence on the length of simulated flow time, and hence computational 
time, required to reach the sustained state area. 
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FIG. 4. Approach to sustained state from different initial conditions. 

2x103- 

T = 0 tDIMENSIONLESS TIME) 

0.3 05 07 09 I.1 I .3 

MEAN AXIAL VELOCITY. a 

0.5 - 

X 

0 0.5 
Y 

FIG. 5. Dynamic nature of sustained state. 
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Another qualitative characteristic of the computed flow that may be identified 
with turbulence is the dynamic nature of the sustained state. Figure 5 shows a 
representation of a portion of the velocity field for run 17 of Table I after the 
sustained state area has been reached. Some of the points on one mesh plane 
perpendicular to the axial direction are exhibited. The solid vectors are the 
secondary or cross plane velocities. They indicate direction and magnitude. 
The dotted lines represent downstream velocities perpendicular to the plane of 
the page. The downstream velocities are drawn to about one-third the scale of the 
secondary velocities. The five vectors at each mesh point represent a time sequence, 
with every second time step being represented. The total of nine time steps occurring 
from the first to the last field represents enough time to travel approximately 
one mesh interval at the mean axial velocity for this example. 

6. QUANTITATIVE RESULTS AND EWDENCE OF CONVERGENCE 

Figure 6 displays the sustained state results of all the runs on a friction-factor 
Reynolds number correlation plot for round pipes. According to the measurements 
of Hoagland [7] and Hirose and Asand [8], the friction factors for square ducts 
are only about 5 % lower than those for round pipes in the turbulent regime. 
The numbers next to the data points refer to run numbers from Table I. 

It is obvious that, for the mesh sizes tested, the departure from the laminar line 
takes place at Reynolds numbers far below the experimentally determined value. 
The calculated transition Reynolds numbers are 250-550, depending on pressure 
gradient and mesh spacing. The collected data and analysis of Hanks and Ruo [9] 

PRESSURE CONDITION 
A E 

MESH SIZE N = 7 0 
N=9 A o 
N= 17 0 
N=li D . 

“I” MEANS RUN I, e+c 
(SEE TABLE I) 

ROUGH PIPES. I~/D)=005 

i RkYNOLDS NUMBER, Re = DWp/p 

FIG. 6. Reynolds Number-Friction Factor Correlation. 
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indicate that the critical Reynolds number for square duct flow is almost identical 
to that for a round pipe, i.e., Re, s 2050. The examples indicate that this early 
departure is not a function of the initial disturbance, but is rather a result of the 
relatively coarse mesh spacings used. It can be seen in Fig. 6 that the critical 
Reynolds number increases as the mesh becomes finer. 

The computed points at each mesh size in Fig. 6 show a tendency toward 
reduction of friction factor with increasing Reynolds number after initial departure 
from the laminar line, as would be expected. However, as the Reynolds number 
increases further, the points begin to rise. This anomalous behavior results from 
the difference approximations and is related to the inability of the grid to represent 
the steep velocity gradients that arise near the wall. This deficiency of the difference 
scheme can be demonstrated by deriving the integral axial momentum equation 
associated with the difference equation in a manner analogous to its derivation 
in the continuous form. This derivation and an analysis of the resulting equation 
is given in Appendix 1. Other such integral equations associated with the difference 
scheme can be derived and used to analyze the results obtained from the com- 
putations [4]. 

0 0. I 02 0.3 04 05 

DIMENSIONLESS DISTANCE. x or y 

FIG. 7. Reynolds stresses. 
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FIG. 8. Reynolds stresses. 
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FIG. 9. Reynolds stresses. 

It can be seen in Fig. 6 that the runs made at the finest mesh, N = 17, have 
a qualitatively different behavior than those made at the coarser meshes when 
displayed on the Reynolds number-friction factor plot. They suggest a curve that 
much more closely resembles the experimentally derived curve in the transition 
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FIG. 10. Reynolds stresses from data of Brundrett and Baines, Re = 83,000. 

region of real turbulent flows. In particular, the demarcation between “laminar” 
and “turbulent” flow becomes sharper. 

Further effects of reducing the mesh size may be seen by comparing the Reynolds 
stresses computed from runs 12, 16, and 23 of Fig. 6. All parameters except mesh 
size are identical for each of these runs. The mean pressure gradient assigned 
would correspond to a Reynolds number of about 7 000, based on duct width, 
if the flow were laminar. Thus, the computed solutions should be converging to a 
turbulent flow in the transition region as the mesh is refined. It is difficult to know 
what should characterize the Reynolds stresses in this region. Nevertheless, some 
comparisons will be made that seem to indicate convergence to a quantitative 
description of what might be expected in real flows in the transition region. 

Figures 7, 8 and 9 are Reynolds stress profiles averaged in the z direction at one 
time level for runs 12, 16 and 23, respectively. They are computed from the 
fluctuating part of the velocity defined as the deviation of the total velocity at a 
point from the z averaged velocity at one time level. For comparison Fig. 10 shows 
the data of Brundrett and Baines [lo] taken in a square duct at a Reynolds number 
of 83 000. The Reynolds stresses in each case have been nondimensionalized by 
the friction velocity W, , defined as 

W, = 4 --v z 1 averaged at wall. 



TURBULENCE PROBLEMS 393 

For the computed examples, W, is based on the mean pressure gradient. There 
is some qualitative agreement between the computed Reynolds stress proCles and 
the experimentally measured ones. In general, the largest values of the stresses 
occur near the wall. This is more in evidence as the mesh is refined. There is a 
tendency for the axial energy component 3 to assume the largest value of all 
the stresses. Againdhis is more evident as the mesh is refined. Furthermore, the 
stresses U’W’ and U’W’ tend to be smaller than the others,& to approach zero at 
the center. The anomalous negative values of &’ and V’W’ occurring at meshes 
N = 9 and N = 11 are almost absent for N = 17. The intensity of the Reynolds 
stresses can be seen to decrease with increasing N for the three runs. The intensity 
of the Reynolds stresses in all three runs is substantially less than that for the 
experimental data. However, since the data were obtained at a much higher 
Reynolds number, this is to be expected. It should be pointed out that there is some 
variation in the profiles depending on what time level is chosen. Furthermore, 
substantial improvement may be obtained in averaged quantities by averaging 
over a number of time levels as well as in the z direction. This may be seenby 
comparing Fig. 11, which is a time and space average of run 16, with Fig. 8, which 
is only a space average of the same run. The length of time averaging permitted 
approximately five diameters to be traveled at the mean velocity. 

In summary of this part, examination of the results of runs at various mesh 
sizes indicates that qualitative and quantitative improvement in the description 
of turbulent flows is being achieved as the mesh is refined. 

-0.2 1 I I I I 

0 0. I 02 0.3 04 05 

DIMENSIONLESS DISTANCE. x or y 

FIG. 11. Reynolds stresses, time and space average. 

#I/10/3-2 
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7. ESTIMATE OF COMPUTING REQUIREMENTS FOR QUANTITATIVE RESULTS 

The results of the computations have been used to estimate computing require- 
ments to achieve quantitative results at various Reynolds numbers. The method 
of estimation assumes (1) the scheme is of O(h), (2) the number of iterations 
needed to relax the pressure equation increases linearly with the number of mesh 
points required to give quantitative results, (3) the fluid must travel one entry 
length to become fully developed, and (4) the required mesh size decreases in 
proportion to the dissipation scale as the Reynolds number increases. The details 
of this development appear in Ref. [4]. 

Computing times on the various machines that were tried for some representative 
Reynolds numbers based on this estimate are given in Table II. It can be seen that 
only at Re = 4000 are the computing times on the fastest two machines even 
marginally practicable. 

TABLE II 

Estimate of Computing Requirements (in hours) 

Reynolds numbers 

Computer 4 x 108 10” 5 x 104 105 

Univac 1107 171 3.4 x 103 6.8 x 106 6.8 x 106 
CDC 6600 43 8.5 x lo2 1.7 x 105 1.7 x 106 
IBM 360175 40 8.0 x lo2 1.6 x IO5 1.6 x lOa 

8. CONCLUSIONS 

A new stable, consistent, finite-difference approximation to the Navier-Stokes 
equations has been developed. It contains no predisposition toward turbulence, 
such as a built-in turbulence theory to represent effects of submesh size motions. 

Extensive numerical testing of the finite-difference scheme has been performed. 

At low Reynolds numbers laminar solutions are obtained. At higher Reynolds 
numbers, analysis and comparison of results for the sustained flow solutions at 
successively finer meshes give strong indication that the solutions are converging 
to a quantitative description of turbulent flows. However, the results show that 
a low order approximation finite-difference scheme employing no representation 
for effects of sub-mesh size motions, such as the scheme used in this work, would 

require excessive computing time in order to obtain quantitative results. 



TURBULENCE PROBLEMS 395 

APPENDIX I: DERIVATION AND ANALYSIS OF THE INTEGRAL AXIAL 
MOMENTUM EQUATION ASSOCIATED WITH THE FINITE DIFFERENCE SCHEME 

The finite-difference analog of the integral axial momentum equation will be 
derived here from the finite-difference version of the axial momentum equation. 
Observations on its usefulness for interpreting the results of numerical 
computations will then be made. 

For brevity, the derivation will be done in only two space dimensions. By way 
of analogy, we have for the continuous case. 

Carrying out the integration and making use of the periodic condition on 
velocity and pressure in the z direction yields 

A B 
I 1 law I I / 

ss 0 ozdxdz= - s ‘APdx 
0 

C 

In (Al), A represents the rate of change of axial momentum. B is the net pressure 
force acting on the fluid in the periodic section, and C is the net drag due to viscous 
shear at the wall. 

In the finite-difference case, summations replace integrals. Thus we wish to 
evaluate 

P:‘+l - P& dF =- -- 
2h dz 

1 $-id W&k + wt-1, + w,“,+l + w;-, - 2( wink+’ + w;-‘) 
h2 )] . 

h2 
642) 
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The time derivative term from (A2) is simply summed and becomes 

The approximation to the first form of writing the convective terms is treated 
as follows: 

where the no slip condition at the wall has been used to obtain expression (A3b). 
Similarly, using the periodic condition in k, we obtain 

; [& z x Kxw,“,+1- WL)] h2 

= f [A g x WZ(W,“,-1 - w;,,] h2. 6434 

The approximation to the second form of writing the convective terms is treated 
as follows: 

1 1 N-1 

= 2 2h k=l [- c (G-mG--1, - GJGJ] h2, b-9 

using the no slip wall condition and the telescoping nature of the summation. 
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However, because of the periodic condition in k, we have 

The pressure terms, when summed, become 

- & y y (p;,, - PYkml + 2h g, h2 
1=2 k=l 

= f y 2h(N - 1) $ h2 
2=2 

We) 

since the P’s cancel because of the telescoping sum and the periodic boundary 
condition, and use has been made of the relation h = l/(N - 1). 

The viscous terms are treated as follows: 

where WL = +( Wi”,” + WF;l). Similarly, 

& y y ( W,“,+l -I- W;-, - 2 W;) h2 
2=2 k=l 

where there is no second term in (A3g) because of the periodic condition. 
Combining (A3a-g), we now have the finite-difference approximation to the 



39% GALLOWAY AND ADLER 

integral momentum equation in a form which can be compared with (Al). Thus, 

1 -- 
Re 

z; cw,“, +h w:-,k> h 

El 

E2 
I I 

- f y (U;-lk WE& - U,” W,“,) h2 
k=l 

E3 
I -l 

(A4) 

It can be seen that the terms to be summed in A’, B’ and C’ are consistent 
approximations to the integrands of A, B and C, respectively. However, El, E2, 
and E3, which can be shown to be of order O(h2), O(h2) and O[(At/h)2], respectively, 
may be thought of as spurious momentum generators or drag terms since they go 
to zero as h and dt go to zero, but otherwise have a finite value. During the 
computations, evaluation of the terms in (A4) showed that El and E3 remained 
insignificant. However, as the mean axial pressure gradient was increased, E2 
assumed larger and larger negative values. Since E2 involves the product of 
velocities one mesh point inside the wall, which with a fine enough mesh should 
be very small, the nature of the error from E2 is a mesh size that is inadequate to 
represent the boundary layer properly. The effect of this spurious drag from E2 
as seen on the Re--plot (Fig. 6) is the erroneous rapid increase offas the Reynolds 
number gets larger. 
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